June 2019

Dear Mr Matthews and Mr Howchin

Church of England Pensions Board and Swedish Council on Ethics for the AP Public Pension Fund

On the 1st of January 2019 Barrick Gold Corporation and Randgold Resources Limited merged to form an industry leader with a focus on creating value for all our stakeholders. Ensuring that the restructured business maintained effective, accountable procedures to govern sustainability, was a key short-term priority post-merger and, with this in mind, we are providing information on both the former Barrick’s and the former Randgold’s Tailings Storage Facilities.

Tailings Management System and Management of Risk

All Barrick-operated or controlled tailings storage facilities (TSFs) are subject to the company’s Tailings and Heap Leach Management Standard (the Standard), which requires that Barrick locates, designs, constructs, operates and closes its tailings storage facilities (TSFs) and its heap leach facilities (HLFs) using a risk-based design approach with site specific data or as otherwise specified by regional regulatory requirements, whichever is more stringent.

This Standard also outlines:

- Roles and responsibilities for our Engineers of Record (EoRs) and Responsible Persons (RPs);
- Schedules for routine inspections by our operators, EoR dam safety inspections (typically annually), dam safety reviews, independent geotechnical review committee assignments and management audits to the Standard. (Barrick has maintained a fully independent geotechnical review committee since 1998);
- Geotechnical instrumentation monitoring, data reduction, assessment and reporting obligations, including the establishment of trigger action response plans (TARPs); and
- Minimum required geotechnical, hydrological, hydrogeological and environmental design and performance standards.

For existing and closed facilities, the Standard outlines six levels of safety oversight that must be undertaken, with full documentation at each stage:

1. **Monitoring technology**
 Our operating sites employ monitoring systems such as vibrating wire piezometers, inclinometers, drone surveys, satellite surveys and imagery, static prisms for movement detection, drainage monitoring and other technologies to monitor tailings storage facilities (TSF’s), abutments, natural slopes and water levels.

2. **Routine Inspection**
 Conducted by suitably qualified and experienced operation site personnel, in compliance with Operation, Maintenance and Surveillance (OMS) Manual requirements. Intended to ensure that the TSF is operating within prescribed parameters.

3. **EoR / Dam Safety Inspection**
 Conducted by the Engineer of Record (EoR) responsible for the design of the current TSF phase, or by a suitably qualified and experienced geotechnical engineer outside of Barrick with a comprehensive understanding of the current TSF phase. Intended to verify that the existing or
anticipated TSF conditions follow design intent and that site-specific performance objectives are being met.

4. **Dam Safety Review**
 Conducted by a suitably qualified and experienced geotechnical engineer outside of Barrick who is neither the EoR nor a representative of the TSF operation or closure design consulting firm and who has a comprehensive understanding of the current TSF phase. Intended to provide a detailed, independent assessment of the safety and operational stewardship of the TSF.

5. **Assurance Audit**
 Conducted by our internal corporate technical specialists. Expected audit frequency of one to three years, based in part on compliance level and previous findings. Intended to ensure that the existing or anticipated TSF conditions and management procedures comply with Barrick’s corporate Tailings Management Standard.

6. **Independent Tailings Review Committee**
 Conducted by one or more qualified and internationally-recognized experts outside of Barrick and not involved with preparation of the TSF design. Intended to provide an expert, independent opinion as to whether or not the TSF design and current and/or anticipated performance demonstrate an acceptable level of care, from geotechnical, hydrotechnical and environmental perspectives and with reference to accepted international practice.

Tailings management approach in light of the recent tailings disasters

Barrick continues to improve its tailings management program, for example by increasing and/or improving geotechnical monitoring equipment and technologies, training site-based tailings staff and conducting regular technical and management reviews of its closed and operating TSFs. Barrick also maintains current, site-specific Emergency Preparedness and Response Plan (EPRP) documents and tests the EPRP protocols. Where issues are encountered, including insufficient understanding of embankment, tailings mass and/or foundation conditions, the company will develop and conduct the necessary programs to address knowledge gaps and, if required, improve estimated stability. We recently conducted a review of our upstream facilities to determine whether these posed any significant risks.

For additional information on the management of our TSFs including our Tailings Storage Facility Inventory, please visit the Barrick website at:
https://www.barrick.com/English/sustainability/environment/default.aspx

I/We certify that the information supplied is correct and true to the best of our knowledge.

Sincerely

Mark Bristow
President and CEO
Tailings Storage Facility Inventory

<table>
<thead>
<tr>
<th>Tailings Storage Facility Name</th>
<th>Site Name (Location)</th>
<th>TSSF Centroid Latitude</th>
<th>TSSF Centroid Longitude</th>
<th>Ownership</th>
<th>TSSF Status</th>
<th>Design Intent Compliance</th>
<th>Methodology</th>
<th>Most Recent Independent Review</th>
<th>Engineering Records Complete</th>
<th>Hazard Classification</th>
<th>Classification Guideline</th>
<th>Stability ever Questioned</th>
<th>Internal Dam Breach or External Support</th>
<th>Most Recent Dam Breach Study</th>
<th>Closure Plan in Place</th>
<th>Long-term Monitoring Included</th>
<th>Climate Change Effects Considered</th>
<th>Note(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1 & 2</td>
<td>Cortez (Nevada, USA)</td>
<td>40.262480 -116.702689</td>
<td>Barrick</td>
<td>Closed</td>
<td>1995</td>
<td>Yes</td>
<td>US</td>
<td>65.5</td>
<td>35</td>
<td>35</td>
<td>Dec 2018</td>
<td>Yes</td>
<td>Significant</td>
<td>DWR NV</td>
<td>Yes ²</td>
<td>Yes and Yes</td>
<td>2018</td>
<td>No</td>
</tr>
<tr>
<td>Cell 4</td>
<td>Cortez (Nevada, USA)</td>
<td>40.266031 -116.686647</td>
<td>Barrick</td>
<td>Operating</td>
<td>2013</td>
<td>Yes</td>
<td>DS</td>
<td>55</td>
<td>39</td>
<td>Dec 2018</td>
<td>Yes</td>
<td>Low</td>
<td>DWR NV</td>
<td>No</td>
<td>Yes and Yes</td>
<td>2018</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>TA 1-3</td>
<td>Cortez (Nevada, USA)</td>
<td>40.203921 -116.622930</td>
<td>Barrick</td>
<td>Closed</td>
<td>1989</td>
<td>Unknown</td>
<td>Unknown</td>
<td>7.5</td>
<td>5.6</td>
<td>5.6</td>
<td>Unknown</td>
<td>Yes</td>
<td>Low</td>
<td>DWR NV</td>
<td>Yes and Yes</td>
<td>2018</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TA 4-5</td>
<td>Cortez (Nevada, USA)</td>
<td>40.213596 -116.617925</td>
<td>Barrick</td>
<td>Closed</td>
<td>1974</td>
<td>Unknown</td>
<td>Unknown</td>
<td>10</td>
<td>1.8</td>
<td>1.8</td>
<td>Unknown</td>
<td>Yes</td>
<td>Low</td>
<td>DWR NV</td>
<td>Yes and Yes</td>
<td>2018</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TA 6</td>
<td>Cortez (Nevada, USA)</td>
<td>40.214394 -116.624058</td>
<td>Barrick</td>
<td>Closed</td>
<td>1984</td>
<td>Unknown</td>
<td>Unknown</td>
<td>16</td>
<td>5.2</td>
<td>5.2</td>
<td>Unknown</td>
<td>Yes</td>
<td>Low</td>
<td>DWR NV</td>
<td>Yes and Yes</td>
<td>2018</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TA 7</td>
<td>Cortez (Nevada, USA)</td>
<td>40.208789 -116.642296</td>
<td>Barrick</td>
<td>Closed</td>
<td>1994</td>
<td>Unknown</td>
<td>DS</td>
<td>19</td>
<td>0.8</td>
<td>4.2</td>
<td>Unknown</td>
<td>Yes</td>
<td>Low</td>
<td>DWR NV</td>
<td>Yes and Yes</td>
<td>2018</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes:

² Significant DWR NV: Yes

³ Low DWR NV: Yes

4 High DWR NV: Yes

5 High SANS 10286: Yes

6 High ANCOLD: Yes

7 Significant ANCOLD: Yes

8 Significant DWR NV: Yes

9 High DWR NV: Yes

10 High SANS 10286: Yes

11 High ANCOLD: Yes

12 Significant ANCOLD: Yes

13 Significant DWR NV: Yes

14 High DWR NV: Yes

15 High SANS 10286: Yes

16 High ANCOLD: Yes

17 Significant ANCOLD: Yes

18 Significant DWR NV: Yes

19 High DWR NV: Yes

20 High SANS 10286: Yes

21 High ANCOLD: Yes

22 Significant ANCOLD: Yes

For the latest version of this inventory, please visit www.barrick.com/sustainability/reports-policies.
Tailings Storage Facility Inventory continued...

Tailings Storage Facility Name	Site Name (Location)	TSF Centroid Latitude (Dec. Deg)	TSF Centroid Longitude (Dec. Deg)	Ownership (a)	TSF Status	Design Intent Compliance (b) (Yes / No)	Reuse Methodology (c)	Current Maximum Height (d) (m)	Curren Tailings Volume (e) (MM^3)	Planned Ultimate Tailings Volume (f) (M^3)	Most Recent Independent Review (g) (Month/Year)	Engineering Records Complete (h) (Yes / No)	Hazard Classification	Classification Guideline 1 (i) (Yes / No)	Stability over Questioned 1 (j) (Yes / No)	Initial Oversight and External Support 2 (k) (Yes / No)	Most Recent Dam Break Study 3 (l) (Month/Year)	Closure Plan in Place (m) (Yes / No)	Long-term Monitoring Included (n) (Yes / No)	Climate Change Effects Considered (o) (Yes / No)	Notes(s)					
North Tailings Basin	Brockton (Ontario, Canada)	44.995584	-78.044357	Barrick	Closed	1983	Yes	US	8.5	1.5	Jan 2015	Yes	High	CDA	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	No	No	
South Tailings Basin	Brockton (Ontario, Canada)	44.987684	-78.036838	Barrick	Closed	1983	Yes	US	7.5	0.2	0.2	Jan 2015	Yes	Significant	CDA	No	Yes	Unknown	Yes	Yes	No	No	No	No	No	No
Bouquet LTA	Yukon, LTA (Quebec, Canada)	48.106408	-78.00949	Barrick	Closed	1983	Yes	US	15	14	14	May 2002	No	Significant	CDA	No	Yes	No	Unknown	Yes	Yes	No	No	No		
Tailings Stack	Callan (Ontario, Canada)	48.310221	-80.32253	Barrick	Closed	1983	Yes	US	20	1.3	1.3	Sep 1998	No	Significant	CDA	No	Yes	No	Unknown	Yes	Yes	No	No	No		
Tailings Pond 1	Culliton Lake (Nunavut, Canada)	61.268559	-89.492138	Barrick	Closed	1983	Yes	US	5	0.3	0.3	Sep 2015	No	Low	CDA	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Tailings Pond 2	Culliton Lake (Nunavut, Canada)	61.268436	-89.47550	Barrick	Closed	1983	Yes	US	0	0.0	0.0	Sep 2015	No	Not rated	CDA	Yes	No	Yes	Yes	Yes	No	No	No	No		
Albino Lake TSF	Esay (British Columbia, Canada)	56.650496	-130.496457	Barrick	Closed	1983	Yes	US	0	0.2	0.2	Jun 2015	Yes	Not rated	CDA	Yes	No	Yes	Yes	Yes	No	No	No	No		
Porc A Residues	Powell River (Quebec, Canada)	48.285235	-79.05039	Barrick	Closed	1983	Yes	US	0	0.3	0.3	Jun 2000	Yes	Not rated	CDA	Yes	No	Yes	Yes	Yes	No	No	No	No		
Renabie TSFs	Renabie (Ontario, Canada)	48.370215	-83.83747	Barrick	Closed	1983	Yes	US	0	3.9	3.9	Aug 2015	Yes	Low	CDA	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Uchi TSFs	Uchi (Ontario, Canada)	51.070900	-92.59390	Barrick	Closed	1983	Yes	US	0	0.5	0.5	Unknown	No	Low	CDA	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Impoundment 1	Bulfrog (Nevada, USA)	36.870915	-116.814836	Barrick	Closed	1983	Yes	US	14	12	12	Mar 1998	Yes	Low	DWR NV	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Impoundment 2	Bulfrog (Nevada, USA)	36.874481	-116.81040	Barrick	Closed	1983	Yes	US	21	19	19	Mar 1998	Yes	Low	DWR NV	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Impoundment 3	Bulfrog (Nevada, USA)	36.874244	-116.814164	Barrick	Closed	1983	Yes	US	14	13	13	Mar 1998	Yes	Low	DWR NV	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Impoundment 4	Bulfrog (Nevada, USA)	36.874911	-116.810668	Barrick	Closed	1983	Yes	US	22	21	21	Mar 1998	Yes	Low	DWR NV	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Colosseum TSF	Colosseum (California, USA)	35.557803	-115.50710	Barrick	Closed	1983	Yes	US	41	4.2	4.2	Unknown	No	Low	DSOD CA	Yes	No	Yes	Unknown	Yes	Yes	No	No	No		
Large TSFs	Grants (New Mexico, USA)	35.243309	-110.83540	Barrick	Closed	1983	Yes	US	30	5.1	5.1	Unknown	Yes	Low	OSE NM	Yes	No	Yes	Unknown	Yes	Yes	No	No	No		
Small TSFs	Grants (New Mexico, USA)	35.237584	-110.82084	Barrick	Closed	1983	Yes	US	7.5	0.9	0.9	Unknown	Yes	Not rated	OSE NM	Yes	Yes	Yes	Yes	Yes	No	No	No	No		
Grizzly Gulch TSF	Homestake (South Dakota, USA)	44.329214	-103.73790	Barrick	Closed	1983	Yes	US	12	9	9	Jun 2000	Yes	Category 1	DENR ED	No	Yes	Yes	Yes	Yes	No	No	No	No		
McDermitt TSFs	McDermitt (Nevada, USA)	41.931130	-117.78590	Barrick	Closed	1983	Yes	US	5	0.4	0.4	Unknown	No	Low	DWR NV	Unknown	Yes	Yes	Unknown	Yes	Yes	No	No	No		
McLaughlin TSF	McLaughlin (California, USA)	38.866172	-122.43808	Barrick	Closed	1983	Yes	US	50	5.1	5.1	Mar 2010	Yes	High	DSOD CA	Yes	Yes	Yes	Yes	Yes	No	No	No	No		
Reservation Canyon TSF	Menard (Utah, USA)	40.331531	-112.196932	Barrick	Closed	1983	Yes	US	13	5.0	5.0	Mar 1998	Yes	Low	DWR UT	Yes	Yes	Yes	Yes	Yes	No	No	No	No		
Dry Stack TSFs	El indio (Region IV, Chile)	-29.768708	-79.97690	Barrick	Closed	1997	Yes	US	215	2.8	2.8	Nov 2004	Yes	Not rated	CDA	Yes	No	Yes	Yes	No	No	No	No			
El Indio TSF	El indio (Region IV, Chile)	-29.763744	-79.986455	Barrick	Closed	1997	Yes	US	78	4	4	Nov 2004	Yes	Significant	CDA	No	Yes	Yes	Unknown	Yes	Yes	No	No			
Pastos Lagos SP	El indio (Region IV, Chile)	-29.749665	-79.900524	Barrick	Closed	1997	Yes	US	49	0.7	0.7	Nov 2004	Yes	Significant	CDA	No	Yes	Yes	Yes	Yes	Yes	No	No			
Upstream TSF	Tambo (Region IV, Chile)	-29.800932	-79.935912	Barrick	Closed	1997	Yes	US	68	3.8	3.8	Nov 2004	Yes	Low	CDA	No	Yes	Yes	Unknown	Yes	Yes	No	No			
Downstream TSF	Tambo (Region IV, Chile)	-29.807111	-79.940018	Barrick	Closed	1997	Yes	US	85	5.5	5.5	Nov 2004	Yes	Low	CDA	No	Yes	Yes	Unknown	Yes	Yes	No	No	No		
Footnotes:

1. Tailings Dam* Name/identifier
2. Location
1a. 1b. Latitude and Longitude in decimal degrees of the approximate TSF centroid, as obtained from Google Earth Pro
3. Ownership (a) As of March 2019; JV Partner(s) indicated in parentheses
4. Barrick Gold Corporation is the majority owner of Acacia Mining plc and periodically audits Acacia’s TSFs and engages with Acacia on the management of its TSFs
5. KGCM is a 50:50 JV of Barrick Gold Corporation and Newmont Goldcorp Corporation; as Newmont Goldcorp is the operating partner, and Barrick will continue to engage with Newmont on their facilities. The information provided for the KGCM TSFs reflects that presented on the Newmont Goldcorp website
6. Status
1. Tailings from the Morila operation are in the final stages of being relocated to a completed (mined-out) open pit for permanent disposal; hence, the new permanent (former open pit) TSF is considered to be in Reclamation status
5. Date of initial operation
6. Is the Dam currently operated or closed as per currently approved design?
(b) Unknown is indicated for legacy closed TSFs that were acquired by Barrick and for which Engineering Records are not complete and the original design, operation and/or closure intent is not fully known
(c) The North Mara TSF current operation does not satisfy design minimum tailings beach width requirements
7. Raise Methodology
(c) Upstream (US), centreline (CL) and/or downstream (DS) methodologies may have been used at any given facility; modified centreline raises considered to be upstream;

8. Is the current Dam Height
(d) Maximum height around Q4 2018 to Q1 2019 for tallest embankment structure within the TSF, reported to nearest 0.5 m.
9. Current Tailings Storage Impoundment Volume
(e) Estimated volume of stored tailings around Q4 2018 to Q1 2019; converted (as required) from stored tailings mass using representative mean bulk density of 1.3 Mg/m³
10. Planned Tailings Storage Impoundment Volume in 5 years time
(a) Corresponding to the current (around February 2019) Life of Mine Plan for the TSF
11. Most recent Independent Expert Review
(p) Most recent Dam Safety Review (DSR) or Independent Geotechnical Review Board (ICGRB) assignment; Unknown indicates that no records were found to confirm that an independent review has been conducted
20. Any other relevant information and supporting documentation. Please state if you have omitted any other exposure to tailings facilities through any joint ventures you may have.
21. The Uchi tailings were deposited in two low-lying areas and have no perimeter embankments
12. Questions regarding the estimated geotechnical stability of the Mercur Reservation Canyon TSF after design earthquake loading were raised during a recent independent review; geotechnical site investigation and laboratory testing programs are underway to support a revised stability evaluation, expected to be completed shortly; remedial options will be designed and completed as required thereafter
13. Two phases of the Cortez TA 7 TSF were built and operated; three additional expansion phases remain permitted but were never constructed
14. What guideline do you follow for the classification system?
(iii) ANCOLD = Australian National Committee on Large Dams
CDA = Canadian Dam Association
DENR SD = South Dakota Department of Energy and Natural Resources
DEQ MT = Montana Department of Environmental Quality
DNR UT = Utah Department of Natural Resources

15. Has this facility, at any point in its history, failed to be confirmed or was confirmed, as serious, or experienced notable stability concerns, as identified by an independent engineer (even if later certified as stable or a different form).
(i) Not being certified/confirmed as stable is assumed to be where a noted deficiency is deemed sufficiently significant to trigger a catastrophic failure – the term deficiency is used in that context herein; for operating facilities, this refers to any identified deficiency for the current life/phase and for a previous life/phase, any deficiency that was not addressed as vetted by independent review for closed/legacy facilities, this refers to any deficiency identified that reflects the current state of the facility versus a previous issue that has been addressed through confirmed changed condition via the closure process

16. Do you have external/in house engineering specialist oversight of this facility? Or do you have external engineering support for this purpose?
(a) Internal/In house engineering specialist oversight is being provided in accordance with the principle of professional indemnity insurance and the successful accomplishment of the works.
(b) The additional instrumentation installations and advanced laboratory testing has been completed and revised slope stability and deformation evaluations are in progress; remedial options will be identified, designed and completed as required thereafter
17. Has a formal analysis of the downstream impact on communities, ecosystems and critical infrastructure in the event of catastrophic failure been undertaken and to reflect final conditions? If so, when did this assessment take place?
(l) Unknown and No indicated for legacy closed TSFs, for which dam breach studies may not have been or were not completed, based on Barrick’s understanding of the available Engineering Records

18. Are there a) a closure plan in place for this dam, and b) does it include long term monitoring?
19. Have you, or do you plan to assess your tailings facilities against the impact of more regular extreme weather events as a result of climate change, e.g. over the next two years?
1a, 1b. Latitude and Longitude in decimal degrees of the approximate TSF centroid, as obtained from Google Earth Pro

20. Any other relevant information and supporting documentation. Please state if you have omitted any other exposure to tailings facilities through any joint ventures you may have.
21. The Uchi tailings were deposited in two low-lying areas and have no perimeter embankments
18. Is there a) a closure plan in place for this dam, and b) does it include long term monitoring?

22. Are you, or do you plan to assess your tailings facilities against the impact of more regular extreme weather events as a result of climate change, e.g. over the next two years?
17. Has a formal analysis of the downstream impact on communities, ecosystems and critical infrastructure in the event of catastrophic failure been undertaken and to reflect final conditions? If so, when did this assessment take place?
19. Have you, or do you plan to assess your tailings facilities against the impact of more regular extreme weather events as a result of climate change, e.g. over the next two years?
20. Any other relevant information and supporting documentation. Please state if you have omitted any other exposure to tailings facilities through any joint ventures you may have.
21. The Uchi tailings were deposited in two low-lying areas and have no perimeter embankments
22. Are you, or do you plan to assess your tailings facilities against the impact of more regular extreme weather events as a result of climate change, e.g. over the next two years?
17. Has a formal analysis of the downstream impact on communities, ecosystems and critical infrastructure in the event of catastrophic failure been undertaken and to reflect final conditions? If so, when did this assessment take place?
19. Have you, or do you plan to assess your tailings facilities against the impact of more regular extreme weather events as a result of climate change, e.g. over the next two years?
20. Any other relevant information and supporting documentation. Please state if you have omitted any other exposure to tailings facilities through any joint ventures you may have.
21. The Uchi tailings were deposited in two low-lying areas and have no perimeter embankments
22. Are you, or do you plan to assess your tailings facilities against the impact of more regular extreme weather events as a result of climate change, e.g. over the next two years?